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In this study, the nanostructured systems formed by two cylindrical quantum dots (QDs) it are considered - one is 
embedded into semiconductor substrate (GaAs) and the second is situated in air. Our particular interest was on evolution of 
the eigenstates of confined electrons with the distance between QDs. It was used a one-band model expression for 
Schrödinger equation [1] to characterize the energy of QDs electrons and that was solved using a finite element method for 
geometry discretization. The presence of the oscillating envelope function of the electrons for different distances between 
dots was observed. The wavelength corresponding to the system formed by two QDs is ranged in infrared domain. 
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1. Introduction 
 
The quantum dots are nanodevices created by 

confining free electrons in a semiconducting matrix. These 
droplets of confined “free electrons” present many and 
interesting electronic properties for future optical devices 
[1, 2]. The progress in quantum devices nanofabrication 
enabled to form an artificial molecule sharing electrons 
from two or more QDs. The couplings between QDs opens 
possibilities to design new quantum electron devices like 
electron splitters, based on physical effects that are usually 
encountered in quantum optics. In this paper, we have 
analyzed the energetic states of systems formed by two 
cylindrical quantum dots (QDs) of Carbon for the two 
cases:  

1. case 1 – one dot with the fixed radius (QD2) is 
situated under the interface semiconductor – air (into the 
semiconductor matrix) and the second dot with the  
variable radius (QD1) is into air; 

2. case 2 – QD1 is embedded in the semiconductor 
matrix and QD2 is situated on the interface semiconductor 
– air into air.  In order to compute the energetic states of 
QDs, we solve the 1-band Schrödinger equation in the 
effective mass approximation.  

 
 
2. Theoretical background 
 
The system of QDs formed by confined electrons in 

some spatial domains could be approximated with a group 
of free electrons in potential cylindrical holes. The energy 
eigenstates and associated eigenvalues of this QDs 
structure are given by the one-band Scrödinger equation in 
the effective mass approximation: 
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Planck’s constant divided by 2π , the position-dependent 
electron effective mass, the position-dependent band-edge 
potential energy, the electron energy, and the electron 
envelope function, respectively. Since cylindrical 
symmetry is assumed, it results that x (r, , z)θ=

r
 are the 

cylindrical variables. From a physical point of view, the 
following two conditions should be satisfied on the 
boundary of each QD: 
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where s

e em (x) m=
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 is the electron effective mass in the 

QD-semiconductor structure and b
e em (x) m=
r

 is the 
electron effective mass in the barrier material, Q  is the 
spatial domain of interest, C is the class of  continuous 
functions and n

r
 is outer normal vector in the domain 

under consideration. Starting from the Schrödinger 
equation (1) with the conditions (2) and using finite 
element method (FEM), we can calculate the eigenvalues 
of electrons energy corresponding to QDs system. Because 
of the geometric symmetry, the problem was reduced at a 
bidimensional one. Consequently, the Schrödinger 
equation was written in a simplified form:   
 

 
 

The equation was discretized on a domain that 
contains the system of QDs and part of the semiconductor 
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matrix, and keeping account of the boundary conditions, a 
matricial eigenvalues and eigenfunctions problem is 
resulting. The discretization of the surface is realized with 
triangular elements, the position of the triangle nodes 
being an input for FEM algorithm. The distribution of the 
triangular elements is not uniform over the considered 
domain, the number of elements being higher close to the 
boundaries.Using the FEM for solving of Schrödinger 
equation it obtains a linear system of equations; the 
solutions are the density functions and the QD electrons 
energy eigenvalues.The boundary conditions consist in 
continuity conditions of density functions at the interfaces 
between different materials. The discretization domain is 
considered large enough as the influence of the offside 
boundaries could be ignored. The UMFPACK pack 
routines were used for solving the resulted unsymmetric 
sparse linear systems. Even if, from numerical solving of 
the eigenvalues and envelope functions problem, a big 
number of solution are obtained, only the energetic states 
below the ionization potential of semiconductor material 
are real. Up to this value of the potential, the electrons 
become free, and could go off from QD in semiconductor. 
One underlines that these energy bands do not represent 
the energy bands in a usual sense but they have been 
considered as possible solutions of the envelope function 
that satisfied the imposed boundary condition. These 
eigenvalues defines the discrete energy levels of electrons 
and the frequencies of emission/absorption energy transfer 
between QD and exterior. 

 
 
3. The vertical cylindrical quantum dots 
systems 
 
In the following, let’s analyze a QDs system 

consisting of two cylindrical Carbon QDs, the first dot 
(QD1) having the variable radius in the range of 50 100÷  
nm and the second dot (QD2) having the radius 50R nm= . 
In the case 1 the QD2 is situated under the interface air-
semiconductor matrix in a fixed position and QD1 is 
placed in air, on the vertical direction to QD2 - Fig. 1(a) - 
while the second case, QD2 is situated on the interface air-
semiconductor matrix in a fixed position and the QD1 is 
embedded in semiconductor matrix, on the vertical 
direction to QD2-Fig.1(b). The electric potentials are 

0.697GaAsV eV=  for the semiconductor substrate and 
0.1CarbonV eV= for QDs. Firstly, the distance between QDs 

was fixed at 90d nm=  and the radius of the QD1 was 
modified. We was looking for a suitable radius of the QD1 
for that both QDs have the same value of one energy 
eigenstate. In order to select the values of QD1 radius for 
that the QDs have the same eigenstate energy, the 
dependence the energy eigenstates for both QDs, as a 
system, with the QD1 radius was determined. The second 
purpose was to analyze the possibility to obtain the same 
value of the one eigenstates energy of both QDs for the 
different values of the distances between dots 
( 50 90nm÷ ).  
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Fig. 1. The geometry of Carbon QDs.FEM discretization; 
(a) Case 1 - QD2 is situated under  the interface GaAs 
matrix-air and QD1 is in air; (b) Case 2 - QD2 is 
situated  on  the  interface  GaAs  matrix-air  and  QD1 is  
              embedded in the semiconductor matrix. 

 
 
 

3. 1 The QD1 is placed in air 
 
From the multiplet eigenvalues of energy that 

correspond to this system, it was selected the first 
eigenstates close to the fundamental energy level. In Fig. 2 
it is represented the dependence of the first three 
eigenstates energy of QD1 and QD2 with the QD1 radius. 
This figure shows that the value of QD1’s energy 
decreases with the increase of the radius of the QD1. This 
behavior of QD1’s energy leads to an increase of the 
wavelength with the increase of the QD1 radius. The value 
of QD2 energy is not significantly modified at the increase 
of the QD1 radius. For the case when the energy of the 
oscillation mode n of QD1 En is equal with the energy of 
the oscillation mode m of QD2 Em the total energy of the 
QDs system will be noted with Enm.The intersection 
points of the En and Em curves lead to the values of the 
QD1’s radius (big dot) for that the QDs have the same 
value of the eigenstate energy Enm with different 
oscillation modes. 
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Fig.2 Evolution of the eigenstate energies with the radius 
of the QD1 for the distance between dots d = 80nm.  

 
 
 

From the Fig. 2 the following the intersection points 
are obtained:  

1. for the radius 67.499R nm=  of the QD1, it is 
obtained the same value of energy for the QDs system, 

21 0.012050E eV=  but for this case the QD1 is in the 
second oscillation mode and QD2 in the first oscillation 
mode.  

2. for the radius of QD1, 81.86R nm= , the same value 
of energy for the QDs system 31 0.012052E eV=  
corresponds with the mode three of QD1 and mode one of 
QD2. There are few more possibilities to have the same 
energy for QDs eigenstates; the eigenstates with low value 
of energy are more stable and precise defined. Fig. 3 
shows the case when the dots, being at the 
distance 80d nm= , have the energy, 31 0.012052E eV= . 
This configuration corresponds to the case when the radius 
of the QD1 is 81.86R nm= . As we can see on Fig.2, at a 
given distance between QDs, for a suitable radius of the 
QD1 we can obtain the same value of the system’s energy, 
corresponding to the mode third of QD1 and mode one of 
QD2.The QDs system energy Enm is related with the 
distance between QDs and with the radius of the QD1. If 
the distance between QDs becomes infinity, the QDs act as 
isolated dot. Fig. 4 represents the evolution of energy E31 
with distance between QDs 10 90d nm= ÷ . As we seen in 
the Fig. 3 this energetic configuration corresponds with the 
mode three of QD1 and mode one of QD2. 

 
 

Fig.3 The envelope function representation  
corresponding to the eigenvalue of energy 

31 0.012052E eV=  for cylindrical quantum dots 
system. Radius of the QD1 is 81.86 nm and d = 80nm 

 
 

The increase of the distance between QDs leads to the 
increase of the system’s energy. In this figure we find for 
the given values of the distance between the QDs, the 
values of the QD1’s radius corresponding to the same 
system’s energy, 31E .The wavelength for this 
configuration is ranged in infrared domain. The behavior 
of system’s energy leads to a decrease of the wavelength 
with the increase of distance between QDs. 

 

 
 

Fig. 4 Evolution with distance between QDs of the E31 
energy of the QDs system for the suitable radius of the 
QD1 for that the QDs system have the same value of  
                                          Energy. 

 
 
 
 
 
 
 
 Case 2 The QD1 embedded in the matrix 
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In the second case, the QD1 is embedded in the 
semiconductor matrix. Fig. 5 shows the dependence of the 
first three eigenstates energy of QD1 and QD2 with the 
QD1 radius.Value of QD1’s energy decreases with the 
increase of the radius of the QD1. For the fundamental 
level, the intersection points of the En and Em curves lead 
to the values of the QD1’s radius (big dot) for that the QDs 
have the same value of the eigenstate energy 21E  and 31E   
with different oscillation modes. 
 

 
 

Fig.5 Evolution of the eigenstates energies with the 
radius of the QD1 for the distance between dots 

d = 80nm. 
 
 

In the Fig. 5 the following the intersection points are 
obtained: (1) for the radius 61.62R nm=  of the QD1, it is 
obtained the same value of energy for the QDs system, 

21 0.013322E eV=  but for this case the QD1 is in the 
second oscillation mode and QD2 in the first oscillation 
mode;(2) for the radius of QD1, 75.29R nm= , the same 
value of energy for the QDs system 31 0.013325E eV=  
corresponds with the mode three of QD1 and mode one of 
QD2. There are few more possibilities to have the same 
energy for QDs eigenstates; the eigenstates with low value 
of energy are more stable and precise defined. Fig.7 shows 
the case when the dots, being at the distance 80d nm= , 
have the energy, 31 0.013325E eV= . This configuration 
corresponds to the case when the radius of the QD1 is 

75.29R nm= . As we can see on figure Fig.6, at a given 
distance between QDs, for a suitable radius of the QD1 we 
can obtain the same value of the system’s energy, 
corresponding to the mode third of QD1 and mode one of 
QD2. Fig. 9 represents the evolution of energy E31 with 
distance between QDs 10 90d nm= ÷ . As we seen in the 
Fig. 7 this energetic configuration corresponds with the 
mode three of QD1 and mode one of QD2. The increase of 
the distance between QDs leads to the increase of the 
system’s energy. In this figure we find for the given values 

of the distance between the QDs, the values of the QD1’s 
radius corresponding to the same system’s energy, 31E . 
 
 

4. Conclusions 
 

The eigenstates of confined electrons depend on both 
the distance between dots and their radius. The eigenstates 
energy of confined electrons is bigger for smaller radius of 
QDs. The wavelength corresponding to the system formed 
by QDs is ranged in infrared domain. For the suitable 
values of the QD1’s radius it can be found the same values 
of the energy for both dots that are in different oscillation 
modes. 

 
 

 
 

Fig. 6 The envelope function representation 
corresponding to the eigenvalue of energy 

31 0.013325E eV=  for cylindrical quantum dots 
system. Radius of the QD1 is 75.29 nm and d = 80 nm 
 
  
 

 
 

Fig. 7 Evolution with distance between QDs of the E31 
energy of the QDs system for the suitable radius of the 
QD1 for that  the  QDs  system  have  the  same value of  
                                      energy 
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